Menu
Open Access Journal

Korean Journal of Environmental Agriculture

p-ISSN 1225-3537
e-ISSN 2233-4173

About the Journalmore..

The Korean Journal of Environmental Agriculture is an official publication of the Korean Society of Environmental Agriculture. It is published quarterly a year, March 31, June 30, September 30, and December 31, and distributed to more than 700 members including individuals and institutions. The abbreviated title is ‘Korean J. Environ. Agric.’ The journal was launched on June 30 in 1982, the Print ISSN was issued on October 30, 1992 (Volume 11, No. 2) while the Online ISSN was issued on December 31, 2010 (Volume 29, No. 4). Whole document of a part of the articles in this journal are listed in the Google Scholar, Korea Citation Index (KCI) and ScienceCentral. The full text is freely available from http://www.korseaj.org.

Creative Commons Attribution Non-Commercial License

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current Issue 2018. Vol.37, Iss.1more..

  • Short-Term Fertilization with Hairy Vetch, Compost and Chemical Fertilizer Affect Red Pepper Yield and Quality and Soil Properties
    Abstract Full-Text PDF

    Abstract

    Close

    BACKGROUND:

    The use of green manure and compost as organic fertilizer may increase crop yield and soil fertility due to improved soil nutrient availability and soil organic matter content (SOM). This study aimed to investigate the effects of hairy vetch (Vicia villosa L.) and compost application on red pepper growth, yield, fruit quality and soil health.

    METHODS AND RESULTS:

    The treatments were no fertilizer (CON), chemical fertilizer (CF), hairy vetch (HV), and livestock compost+HV (LC+HV). Red pepper seedlings (70 days old) were transplanted and maintained in experimental plots for 140 days. Plant dry weight, microand macronutrient contents of plants and soil chemical properties were determined. All fertilizer treatments significantly increased plant dry weight. Fruit yield was significantly highest with HV treatment. As for nutrient content, plants in HV and LC+HV treatments have significantly higher K and Ca contents than the other treatments. Regarding soil properties, HV and LC+HV application significantly altered the soil chemical properties. Significantly higher SOM was observed in HV and LC+HV treated soils.

    CONCLUSION:

    The results of this study suggest that short-term application of hairy vetch and compost is an effective alternative to the conventional chemical fertilizer to increase fruit yield red pepper and improve soil health.

  • Elevated Temperature Treatment Induced Rice Growth and Changes of Carbon Content in Paddy Water and Soil
    Abstract Full-Text PDF

    Abstract

    Close

    BACKGROUND:

    The global mean surface temperature change for the period of 2016∼2035 relative to 1986~2005 is similar for the four representative concentration pathway (RCP)’s and will likely be in the range of 0.3℃ to 0.7℃. Climate change inducing higher temperature could affect not only crop growth and yield, but also dynamics of carbon in paddy field.

    METHODS AND RESULTS:

    This study was conducted to evaluate the effect of elevated temperature on the carbon dynamics in paddy soil and rice growth. In order to control the elevated temperatures, the experiments were set up as the small scale rectangular open top chambers (OTCs) of 1 m (width)×1 m (depth)×1 m (height) (Type 1), 1 m (W)×1 m (D)×1.2 m (H) (Type 2), and 1 m (W)×1 m (D)×1.4 m (H) (Type 3). The average temperatures of Type 1, Type 2, and Type 3 from July 15 to October 30 were higher than the ambient temperatures at 0.4℃, 0.5℃, and 0.9℃, respectively. For the experiment, Wagner’s pots (1/2,000 area) were placed inside chambers. The pots were filled with loamy soil, and chemical fertilizer and organic compost were applied as recommended after soil test. The pots were flooded with agricultural water and rice (Shindongjin-byeo) was planted. It was observed that TOC (total organic carbon) of the water increased by the elevated temperatures and the trend continued until the late growth stage of the rice. Soil TOC contents were reduced by the elevated temperatures. C/N ratios of the rice plant decreased by the elevated temperature treatments. Thus, it was assumed that the elevated temperatures induced to decompose soil organic matter. Elevated temperatures significantly increased the culm length (P<0.01) and culm weight (P<0.05) of rice, but the number and weight of rice panicle did not showed significant differences.

    CONCLUSION:

    Based on the results, it was suggested that the elevated temperatures had an effect on changes of soil and water carbons under the possible future climate change environment.

  • Measurement of Exchangeable Cations in Salt Accumulated Vinyl Greenhouse Soils
    Abstract Full-Text PDF

    Abstract

    Close

    BACKGROUND:

    Although 1 M NH4OAc (pH 7.0) is predominantly used as the extractant of exchangeable cations in agricultural soils, this method is unsuitable for extracting the cations in saline and calcareous soils. This study was performed to select a proper method to determine exchangeable cations in vinyl greenhouse soils.

    METHODS AND RESULTS:

    Exchangeable cations (Ca, Mg, K, Na) in saline vinyl greenhouse soils were determined after extraction with 1 M NH4OAc (pH 7.0 and 8.5) and 1 M alcoholic NH4Cl (pH 8.5). Sum of exchangeable cations of the soils extracted with 1 M NH4OAc at pH 7.0 was 1.9-2.5 times greater than soil cation exchange capaity determined at pH 7.0, even though soluble salts were pre-removed. A similar result was found when the cations were extracted with 1 M NH4OAc at pH 8.5. Those results are mostly due to the overestimation of exchangeable Ca and Mg, linked to a partial dissolution of sparingly soluble salts in NH4OAc solution. When extracted with 1 M alcoholic NH4Cl at pH 8.5, extractable Ca and Mg decreased significantly due to the lower solubility of Ca and Mg carbonates in the extractant. And the sum of exchangeable cations was very close to the corresponding exchange capacity of soils.

    CONCLUSION:

    Alcoholic NH4Cl (pH 8.5) is proposed as a reliable extractant in determination of exchangeable cations in saline vinyl greenhouse soils. And soluble salts should be removed prior to the extraction of exchangeable cations.

  • Effects of Incorporation of Green Manure Crops on the Growth of Watermelonand Soil Nitrate Nitrogen Concentration
    Abstract Full-Text PDF

    Abstract

    Close

    BACKGROUND:

    In this study, we evaluated the effects of soil incorporation of hairy vetch (HV) or ryeas a green manure on the growth and yields of watermelon and soil nitrate nitrogen in a green house.

    METHODS AND RESULTS:

    HV and rye were cultivated for 151 days after sowing on October 30th and incorporated into soil before transplanting watermelon. The amount of N added by soil incorporation of HV and rye were 79 kg/ha and 88 kg/ha, respectively. Five different N treatments for each of HV and rye were included as follows: green manure, green manure with urea at 25%, 50%or 75%, and 100% ureafor the N recommendation rate. The growth and fruit yield of watermelon were not different among the treatments of both HV and rye. Soil nitrate N content at both HV and rye treatments decreased continuously with the lapse of days after planting (DAP) and was lowest at 75 DAP: 44 mg/kg and 52 mg/kg the for the HV and rye treatment without urea, respectively.

    CONCLUSION:

    These results indicate that the N mineralized from the soil incorporated HV or rye accounts for an important portion of N available for the growth and fruit yield of watermelon. It can be suggested that the green manures, comparable to ureacould ensure the yield of watermelon, if soil nitrate N content isabove 40 mg/kg by soil incorporation of HV and rye during watermelon cultivation. However, further studies on the relationship between soil nitrate N content during cultivation periods and the fruit yield of watermelon are required.

Most Viewmore..

Most Downloadmore..